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Infinite Hierarchy of Exponents in a 
Two-Component Random Resistor Network 
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We have studied the voltage distribution for a two-component random mixture 
of conductances a a and ~h. A scaling theory is developed for the moments of the 
distribution, which predicts, for small values of h = ~a/ah, an infinite number of 
crossover exponents, one for each moment, for Euclidean dimension d >  2, and 
only one crossover exponent for d = 2. Monte Carlo results on the square lattice 
confirm this prediction. 
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Recently the study of the voltage distribution in a random resistor 
network(l 4) has given rise to much interest due to its peculiar behavior. It 
was found that the moments of the voltage distribution at the percolation 
threshold scale with an infinite number of independent exponents as the 
system size L goes to infinity. More recently this infinite hierarchy of 
exponents was related to the multifractal structure of the incipient infinite 
cluster and a similar behavior was also found in a random superconducting 
network. (2) In this paper we consider the general case of the voltage 
distribution of a two-component random resistor network. To be more 
precise, we consider a d-dimensional hypercubic lattice and we associate to 
each bond /j a conductance a,j = aa with probability p and a~ = crb with 
probability 1 - p .  If a unit voltage A V =  1 is applied between the two 
opposite edges of the network, each bond will be characterized by a voltage 
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drop with absolute value Vii and power dissipated a 0 I/~,j. Next consider the 
moments of the power dissipated 

where the brackets denote the average over all bond configurations. 
At p = Pc two limiting cases have already been studied: (i) the random 

resistor network, aa = 1 and ab = 0, in which the moments scale as 

m(k, 1, O ) ~ L  -~(k) (2) 

and (ii) the random superconducting network (aa = oo and ab = 1). In this 
case M(k, 0% 1 ) is made of two contributions: a divergent one, arising from 
the spanning configurations of superconducting bonds, and a finite one, 
M'(k, o% 1), coming from the nonspanning configurations, which scales as 

M'(k, or, 1 ) ~ L  ~'(k) (3) 

Note that in these limits (2) and (3) coincide with the kth moments of the 
voltage distribution. 

Since the voltage distribution is invariant under the transformation 
a~ ~ zaij, from (1) we obtain the following homogeneity relation: 

M(k, 2a~, )~ab) = ).k/2M(k, aa, ab) (4) 

Choosing first 2 = 1/ao and then 2 = 1/ab, we find the following relation 

M(k, 1, h)=hk/2M(k, h l, 1) (5) 

where h = ab/a~. 
Note that, in the limit h ~ 0, the left-hand side approaches M(k, 1, 0), 

the moments in the random resistor network, and the right-hand side 
approaches h~/2M(k, 0% 1), the moments in the random superconducting 
network. Since for k = 2  the moment coincides with the conductance, 
Eq. (5) reduces to an already known result, relating the conductances of a 
random resistor and a random superconducting network. (5) 

We consider now the case h ~ 1. The variable h plays the same role as 
a magnetic field in an Ising model, (s'6) i.e., when h is different from zero the 
critical behavior disappears. Therefore, the natural scaling ansatz is 

M(k, 1, h)~ hU[f~(k, Lh ~) + f2(k, Lh~)] (6a) 

and from (5) 

M(k, h -x, 1)~hU-k/2[f~(k, Lh ~) + f2(k, Lh~)] (7a) 
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where f l  and f2 are the contributions, respectively, from the spanning and 
the nonspanning configurations; for small values of h, f2 is neglegible with 
respect to f l  in (6a). On the other hand, in (7a) the first term is the 
divergent one and only f2 contributes to M'(k, h-  1, 1). Therefore we can 
write 

M(k, 1, h) = h"f~(k, Lh ~~ (6b) 

and from (5) 

M'(k, h -1, 1)=h"-~:/zf2(k, Lh 'p) (7b) 

For Lh~~ 1, (6b) and (7b) must behave, respectively as (2) and (3). 
Consequently, we have that the functions f l (k ,x) . , .x-"/~~ ) and 
fz(k, x ) ~ x  -(" k/2)/~g2(k, x), with the exponents u and r given by 

u = (k/2)fi(k)/E~'(k) +/3(k)] (8) 

and 

~o = k /2E~ ' (k  ) + p(k)] (9) 

and g l (k ,  O) and g2(k, O) constants. In this limit (6b) and (7b) are written 
as 

M(k, 1, h) = L P(k)gl(k, Lh ~) (10) 

M'(k, h -~, 1)=L~'(k)g2(k, Lh ~~ ( l l )  

For the particular case d =  2, duality arguments give ~"(k)= kp(2) -p(k) ;  
therefore, for every value of k, u =p(k)/2/~(2) and ~0 = 1/20(2), independent 
of k, where /~(2)~0.98 is the conductivity exponent, which has been 
evaluated numerically very accurately (see Ref. 2 and references therein). 

In order to test the scaling prediction (10), we have performed 
numerical simulations on an L x L  square lattice at the percolation 
threshold (p=pc=0.5) ,  where to each bond is assigned a conductance 
equal to 1 with probability p and a conductance equal to h with probability 
1 - p. We have analyzed system sizes L = 40, 60, 80, 100 for different values 
of h, h=0.1, 0.05, 0.01, 0.001, and averaged our data over many con- 
figurations (2000, 1000, 300, 200 configurations, respectively, for L=40 ,  
60, 80, 100 at h = 0.001). 

A unit potential drop is imposed across the sample and free boundary 
conditions are used in the transverse direction. Only those configurations 
are analyzed in which a spanning cluster of bonds with unit conductance is 
present. For each spanning configuration we then calculate the voltage at 
each node of the network by a standard numerical relaxation algorithm. 
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Fig. 1. The average voltage distribution of a 100 x 100 square lattice at Pc plotted versus 
log V for (a) h = 0.1 (500 configurations), (b) h = 0.01 (300 configurations), and (c) h = 0.001 
(200 configurations). The average is taken over the spanning configurations. 
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Fig. 2. The quantity gt(k,  Lh ~) = M(k,  1, h) L ~k) plotted as a function of Lh ~ for (a) k = 0.6, 
(b) k ~  1, (c) k = 2 ,  (d) k = 3 ,  and (e) k = 4 .  For each value of k, the data corresponding to 
different system sizes L(D ,  40; ~ ,  60; x ,  80; + ,  100) and different values of h collapse on the 
same universal curve. 
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Fig. 2 (continued) 
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Fig. 2 (continued) 

First we analyze the voltage distribution n(V) for different values of h 
(Fig. 1). The qualitative behavior of n(V) is as expected: for h = 1, that is, 
for an homogeneous network of unit conductances, the voltage distribution 
is a delta function peaked at a value of the voltage equal to 1/L. For h still 
close to 1 (h=0.1) ,  the voltage distribution n(V) is a sharply peaked 
function that maintains the main features of a delta function. As the value 
of h decreases, the distribution widens over a larger range of V values, 
exhibiting the characteristic low-voltage tail present in the voltage dis- 
tribution of the random resistor network. 

Then we test the scaling prediction (10). For  different moments of the 
power dissipated we consider the scaling function g~(k, Lh~), which, for 
each value of k, is expected to be a function of the variable Lh ~, where the 
crossover exponent is ~0 = 0.51. In Fig. 2 the scaling functions gl(k, Lh ~) = 
M(k, 1, h) L #(k) are plotted as function of Lh ~ for the whole range of L and 
h values and for different values of k, where the values of #(k) have been 
taken from the literature. (2) The collapse of our data fully confirms (10). 
Note also that our data show that g~(k, Lh ~) is a convex function of Lh ~ 
for k > 1 and a concave function for k < 1. 

In conclusion, we have found that the crossover exponents of the 
various moments of the power dissipated for a two-component random 
mixture in two dimensions are characterized by one single exponent. It 
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would be interesting to study the problem further in higher dimen- 
sionalities, where an infinite number of crossover exponents is predicted. 
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